
Answering the Question of Likelihood

Nov 14, 2013

Risk Reporting Matrix

- Consequences well defined (cost, schedule, performance)
- Likelihood mostly subjective judgment

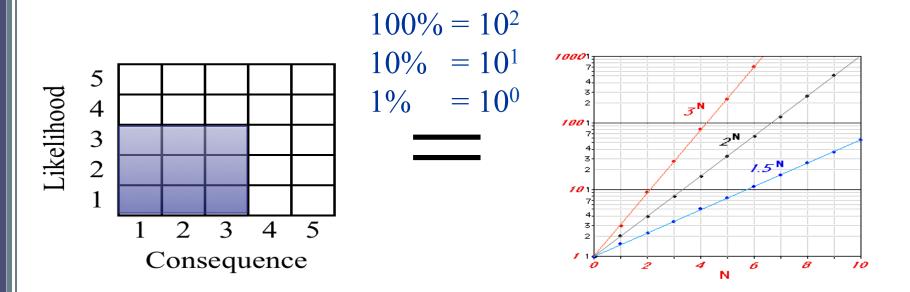
Risk Reporting Matrix

• It depends...

Dept. of Energy Example			Dept. of Defense Example				
5	Very High	> 90%	5	Near Certainty	~ 90%		
4	High	75 - 90%	4	Highly Likely	~ 70%		
3	Moderate	26 - 74%	3	Likely	~ 50%		
2	Low	10 - 25%	2	Low Likelihood	~30%		
1	Very Low	< 10%	1	Not Likely	~ 10%		

Likelihood Guidance

Percentage of what?


"Many, after careful consideration, are convinced that such statements about probability to a person mean precisely nothing, or at any rate that they mean nothing precisely."

- L. J. Savage, The Foundations of Statistics

Risk Reporting Matrix

- When percentages are displayed numerically (0 100%) in a risk cube, the perception of linearity is conveyed
- When percentages are displayed exponentially, their logarithmic nature is revealed

Case Study

- 50-year life span
- Likelihood based upon
 - How often the activity occurs
 - Chance of observing a failure during the activity
- Divide into periods (frequencies) understood by the user

Frequency of Task	Daily	Weekly	Monthly	Quarterly	Semi- Annually	Annually	Lifetime
Outcomes (x_i)	18,250	2,607	600	200	100	50	1
$Log_{7.12}(x_i)$	5.0	4.0	3.3	2.7	2.3	2.0	0.0

Failure probability modulation

			Probability of Failure (P _f)				P_f)
Frequency of Event or Task	x _i	$\operatorname{Log}_{7.12}(x_i)$	90%	70%	50%	30%	10%
Daily	18,250	5	4.9	4.8	4.6	4.4	3.8
Weekly	2,607	4	4.0	3.8	3.7	3.4	2.8
Monthly	600	3.3	3.2	3.1	2.9	2.6	2.1
Quarterly	200	2.7	2.6	2.5	2.3	2.1	1.5
Semi-Annually	100	2.3	2.3	2.2	2	1.7	1.2
Annually	50	2	1.9	1.8	1.6	1.4	0.8

Look-up table

	Probability of Failure ($P_f(x_i)$)					
Frequency of Event or Task	90%	70%	50%	30%	10%	
Daily	5	5	5	4	4	
Weekly	4	4	4	3	3	
Monthly	3	3	3	3	2	
Quarterly	3	3	2	2	2	
Semi-Annually	2	2	2	2	1	
Annually	2	2	2	1	1	

General Equation

$P(x_i) = log_{\sqrt{i}}(x_i \cdot P_f(x_i))$ Where:

- T = Number of decision tiers (i.e., scale)
- *I* = Highest number of event/task repetitions that occur within the time frame examined
- x_i = The number of times an event/task occurs within the time frame examined

 $P_f(x_i) =$ Probability of a failure during an event/task

Capabilities and Limitations

- Use any units of measure
 - Flight hours, run time
- Calculates relative likelihoods
 - Frame of reference matters (tiers and span)
- Can produce off-scale results
 - Likelihoods < 0</p>
 - Likelihood so low it could be ignored based on consequence
 - Likelihoods > Scale
 - Likelihood is so high it could be considered as realized
- User-defined analysis tool
 - Scalable
 - Infinitely adjustable
- Combine with reliability growth management methods

Application

- Inputs
 - Time frame (SUT life span)
 - Risk reporting matrix tiers (5 is common)
 - Periodicity of event/task
 - Training proficiency requirements
 - Periodic maintenance requirements
 - Probability of observing a failure $(P_f(x_i))$
 - Estimated or observed RMA data
 - Life Cycle Employment (affects x_i)
 - Operational time / (Operational Time + Maintenance Time)
 - Operational TEMPO (affects x_i)
 - Typical for SUT

- Basic factors
 - Span, reporting scale, event frequency, event failure rate estimate
- Tailored factors
 - Employment factors (Maintenance periods, Operational Tempo, etc...)

Risk Likelihood Calculator	
Q1: Over what time frame (in years) do you want to evaluate the likelihood of a risk?	50
Q2: How many tiers of of likelihood are there in your risk reporting matrix?	5
Q3: What is the interval (in days) between occurrences of the event/task you are evaluating?	7
Q4: What is the estimated failure rate (in %) of the event/task you are evaluating?	15
Q5: What is the percent of time the SUT will be employed over it's expected life span?	77
Q6: What is the expected operational tempo (in percent) for the SUT when employed?	90
On a scale of 1 to 5 the likelihood of your risk occurring is:	2.85
Based on your answers to Q1 and Q2, the likelihood scaling factor for your risk reporting matrix is:	7.12
Your event will occur 1,807 times over the time frame you selected in Q1.	
Notes:	
1. Risk likelihood comparisons cannot be made unless they are observed over the same time period (Q1) and on the	same
scale (Q2).	
2. The evaluation frame of reference is established by the response to Q1.	

- 3. Likelihood is scaled to the number of decision tiers by the response to Q2.
- 4. The answer to Q4 cannot be zero. Extreemly low failure rates can be estimated.

- Precise estimate
 - Tie breaker for equal-consequence risks
- Off-scale high results:
 - Risk may be considered realized
- Off-scale low results:
 - Risk may be considered negligible

Inputs	Case 1	Case 2	Case 3
Time Frame (Years)	50		
Tiers	5		
Interval (Days)	7		
Failure Rate (%)	15		
Life Cycle (%)	100		
Op Tempo (%)	100		
Likelihood	3.04		

Inputs	Case 1	Case 2	Case 3
Time Frame (Years)	50	50	
Tiers	5	5	
Interval (Days)	7	7	
Failure Rate (%)	15	15	
Life Cycle (%)	100	77	
Op Tempo (%)	100	100	
Likelihood	3.04	2.91	

Inputs	Case 1	Case 2	Case 3
Time Frame (Years)	50	50	50
Tiers	5	5	5
Interval (Days)	7	7	7
Failure Rate (%)	15	15	15
Life Cycle (%)	100	77	77
Op Tempo (%)	100	100	90
Likelihood	3.04	2.91	2.85

Implications

- Consistent with risk management guidance
 - Avoid (eliminate number of occurrences $(x_i = 0)$)
 - Mitigate (reduce failure rate $P_f(x_i)$ and/or x_i)
 - Accept (do nothing)
 - Transfer (someone else's problem)
- Common Frame of reference
 - Must be the same span of events (years, hours, etc.)
 - Otherwise risk comparison / reporting will be degraded
- Order of magnitude between tiers
 - Order of magnitude reduction to report lower likelihood/exposure
 - Risk exposure "burn down" harder to justify

- Objective vice subjective estimate
 - Calculation
 - Consistent
 - Logical
 - Asks better questions than "What do you think?"
- Scalable, adaptable and adjustable
- Rumb line to focus the likelihood debate

Contact Information

700 Independence Parkway Suite 300 Chesapeake, VA 23320 (757) 361-9581 FAX (757) 361-9585

http://www.avwtech.com ricke@avwtech.com